亚硝酸还原酶(NiR)活性检测试剂盒说明书

产品货号	产品名称	包装规格	测定方法
PMHE2-C24	植物亚硝酸还原酶(NiR)试剂盒	24T	常量法

产品说明:

亚硝酸还原酶(Nitrite reductase, NiR)是亚硝态氮还原过程中的关键酶,在自然界氮素循环过程中发挥着重要作用,其广泛存在于微生物及植物体内,能够催化亚硝酸盐还原,减少亚硝态氮在环境中的积累,降低其对生物体生长发育的毒害作用。

亚硝酸还原酶可将 NO_2 -还原为NO,使样本中参与重氮化反应生成紫红色化合物的 NO_2 -减少,即540nm处吸光 值的变化可反应样本中亚硝酸还原酶的活性。

试剂组成:

试剂名称	规格	保存条件	
提取液	液体30mL×1 瓶	2-8℃保存	
试剂一	液体 8mL×1 瓶	2-8℃保存	
试剂二	粉剂×2 瓶	2-8℃保存	
试剂三	粉剂×1瓶	2-8℃保存	
试剂四	液体25mL×1 瓶	2-8℃保存	
试剂五	液体25mL×1 瓶	2-8℃保存	
标准品	液体 1mL×1 支	2-8℃保存	

溶液的配制:

- 1、试剂二: 临用前加入6mL 蒸馏水充分溶解, 2-8℃保存2 周;
- 2、 试剂三: 临用前加入 15mL 蒸馏水, 可70-80℃加热溶解; 2-8℃保存3 个月。
- 3、试剂五: 若出现沉淀, 可70-80℃加热溶解:
- 4、标准品: 10μmol/mL 亚硝酸钠标准溶液;
- 5、工作液: 临用前根据样本量将试剂四和试剂五按1:1 的比例混合,现用现配。

操作步骤:

一、样本处理(可适当调整待测样本量,具体比例可以参考文献)

1. 组织:按样本质量(g): 提取液体积(mL)1:5~10 比例(建议称取0.1g 样本,加入 1.0mL 提取液)加入提 取液,冰浴匀浆后,于4 °C , 10000g,离心 10min,弃沉淀,取上清液置于冰上待测。

2. 细菌或细胞:按细胞数量(10⁴):提取液体积(mL)500~1000:1 的比例(建议500万细胞加入1.0mL 提取 液)加入提取液,冰浴超声破碎细胞(功率200w,超声3s,间隔7s,总时间3min),然后于4℃,10000g,离心10min,弃沉淀,取上清液置于冰上待测。

二、测定步骤

- 1、分光光度计预热30min 以上,调节波长至540nm,蒸馏水调零。
- 2、标准液的稀释: 将10μmol/mL的标准溶液用蒸馏水稀释至0.08、0.06、0.05、0.025、0.0125、0.00625、0.003125、 0.0015625μmol/mL标准溶液待测。
- 3、标准液稀释可参考下表:

序号	稀释前浓度(µmol/mL)	标准液体积(μL)	蒸馏水体积(µL)	稀释后浓度(µmol/mL)
1	10	30	270	1
2	1	80	920	0.08
3	1	60	940	0.06
4	1	50	950	0.05
5	0.05	500	500	0.025
6	0.025	500	500	0.0125
7	0.0125	500	500	0.00625
8	0.00625	500	500	0.003125
9	0.003125	500	500	0.0015625

备注:实验中每个标准管需350µL标准溶液。

4、样本测定:

11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
试剂名称(μL)	基质管	对照管	测定管	标准管	空白管
样本	-	100	100	-	_
蒸馏水	100	200	-	-	-
试剂一	200	-	200	-	-
试剂二	200	200	200	-	_
	混匀后,25℃反应1h			_	-
试剂三	200	200	200	_	_
	充分震荡	통30s,静置5min,	_	_	
上清液	350	350	350	_	_
标准品	-	_	_	350	_
蒸馏水	-	_	_	-	350
工作液	700	700	700	700	700

充分混匀,静置5min,于1mL玻璃比色皿中测定540nm各管吸光值,分别记为A基质管、A对照管、A 测定管、A标准管和A空白管,计算 Δ A测定=A基质管-(A测定管-A对照管), Δ A标准=A标准管-空白 管。标准曲线、空白管和基质管只需测1-2次,每个测定管需设一个对照管。

三、亚硝酸还原酶活性计算

1. 标准曲线的绘制

以标准溶液浓度为x 轴(x, μ mol/mL),标准溶液对应的 ΔA 标准为y 轴(y, ΔA 标准),建立标准曲线,得 到标准方程y=kx+b,将 ΔA 测定带入方程得到x (μ mol/mL)。

- 2. 酶活计算
- (1) 按照蛋白浓度计算

酶活单位定义:每mg组织蛋白每小时还原 $1\mu mol\ NO_2$ 的量为一个酶活力单位。

NiR (U/mg prot)

- $=_{X}\times V1\div V2\div Cpr\div T=_{X}\times 7\div Cpr$
 - (2) 按照样本质量计算

酶活单位定义:每g组织每小时还原 1μ mol NO_2 "的量为一个酶活力单位。

NiR (U/g 质量)

- $=x\times V1\div V2\times V$ 提÷W÷ $T=x\times 7\div W$
- (3) 按照细菌/细胞数量计算

酶活单位定义:每 10^4 个细菌/细胞每小时还原 1μ mol NO $_2$ 的量为一个酶活力单位。NiR(U/ 10^4 质量)= $x\times V1\div V2\times V$ 提÷细菌/细胞数量÷ $T=x\times 7$ ÷细菌/细胞数量

V1: 取上清液前的反应体系体积,0.7mL; V2: 加入的样本体积,0.1mL; V 提: 加入的提取液体积,1.0mL; T: 反应时间,1h; W: 土样质量,g; Cpr: 样本蛋白浓度,mg/mL; 细菌/细胞数量: 以 10^4 计。